Adding Forces using the Parallelogram Method

Name

Find the resultant force in each of these situations. Use a separate piece of graph paper for your scale drawings.

More on the Parallelogram Method

The parallelogram method can be used to add anything that can be represented with an arrow. For example, displacement (distance in a given direction) can be represented with an arrow, so we can use the parallelogram method to add displacements.

Use exactly the same method as for forces – draw both the arrows to scale starting from the same point, and continue as you did with forces.

Try the problems below – some need the parallelogram method, others don't. Again, use graph paper when needed.

- 1. I walk 5km North then 3km South. What is my final displacement from my starting point?
- 2. I walk 5km North then 3km South then 8km North. What is my final displacement from my starting point?
- 3. I walk 5km North then 3km East. What is my final displacement from my starting point?
- 4. I walk 5km N then 3km SE. What is my final displacement from my starting point?
- 5. I walk 5km North then 3km on a bearing of 030. What is my final displacement from my starting point?

Scalars and Vectors

Quantities that have a direction associated with them (like force and displacement) are called vectors.

Quantities that don't have a direction (like temperature and mass) are called scalars.

Can you think of any other quantities that:

- 1. Have a direction:
- 2. Don't have a direction: